
Ontology-based User Model

Ontology-based user model defines concepts representing user characteristics
and identifies relationships between individual characteristics connected to do-
main ontology. Such a model is (after its population) used by presentation
tools to provide personalized navigation and content. Model can be employed
also in content organizing tools (e.g., perform sorting of items based on user’s
preferences).

User ontology in project MAPEKUS1 is composed of two standalone ontolo-
gies, which separate domain-dependent and general characteristics:

• generic-user ontology – defines general user characteristics;

• publication-user ontology – defines characteristics bound to the domain of
publications represented by domain ontology.

1.1 Domain independent model

1.1.1 Class User

User is a primary class of domain-independent user model (Fig 1.1). It has
following data and object properties:

• hasMaxAge, hasMinAge – data property of type xsd:int represents upper
and lower boundary of interval which contains user’s age;

• hasChild – data property of type xsd:boolean has the value true or false
depending on whether a user has at least one child or not;

• livesInRegionOfSize– data property of type xsd:int represents number
of citizen in user’s region of residence;

• hasCharacteristic – object property represents domain independent
characteristics, its range are instances of type UserCharacteristic;

• includes – object property with a range instances of type DomainSpeci-
ficUser represents domain-specific parts of user model.

1MAPEKUS project, http://mapekus.fiit.stuba.sk

1



1.1.2 UserCharacteristic class

Class UserCharacteristic has following properties:

• hasTimeStamp – data property of type xsd:string represents a time
stamp of this characteristic;

• hasCountOfUpdates – data property of type xsd:int represents number
of actualization (updates) of this characteristic;

• hasSource – object property with a range instances of typeUMSource rep-
resents characteristic’s source;

• contributesTo – object property with a range instances of type Goal
represents a goal, which relates to this characteristic;

• hasRelevance – object property represents relevance of this characteristic
in order to achieve Goal linked by contributesTo property; its range
instances are of type c:LevelOrdering;

• hasConfidence – object property represents confidence of this characteris-
tic (deqreee of quality of user characteristic estimation); its range instances
are of type c:LevelOrdering.

AttributePreference

hasWeight Float

relatesToAttribute Instance GenericAttribute

CrispCharacteristic

hasCrispValue String*

isa

FuzzyCharacteristic

hasFuzzySet Instance FuzzySet

isa

FuzzyfiedCharacteristic

hasFuzzyfiedValue Instance* FuzzyfiedValue

isa

UserCharacteristic

hasTimeStamp String

hasCountOfUpdates Integer

hasSource Instance UMSource

contributesTo Instance* Goal

hasRelevance Instance c:LevelOrdering

hasConfidence Instance c:LevelOrdering

isa

GenericUserCharacteristic

relatesTo Instance

isa

RuleCharacteristic

hasResultValue Float

hasClause Instance* Clause

isa

User

livesInRegionOfSize Integer

hasMaxAge Integer

hasChild Boolean

hasMinAge Integer

includes Instance* DomainSpecificUser

hasCharacteristic Instance* UserCharacteristic

hasCharacteristic*

DomainSpecificUser

includes*

Figure 1.1: Domain-independent user model.

UserCharacteristic class has following subclasses:

2



• AttributePreference – represents local preferences. One subclass of this
class is used for an individual characteristic. It can be FuzzyCharacter-
istic, CrispCharacteristic or FuzzyfiedCharacteristic.

• GenericUserCharacteristic – represents characteristic in general, which
can be used to express relationship to any entity of user and domain model.

• RuleCharacteristic – represents global preferences in the form of rules,
e.g.,: resultV alue = 0.5 IF (goodSalary >= 0.7 AND goodPosition >=
0.4).

1.1.3 UMSource class

UMSource class does not have any data or object properties. It is assumed, that
such instances exist in domain-specific parts of a model that represent ways how
the user model gets populated with data (automatically by software tools and
manually from human intervention).

1.1.4 Goal class

Goal class does not have any data or object properties. It is assumed that that
such instances exist in domain-specific parts of a model that represents user
goals in the particular domain.

1.1.5 AttributePreference class

AttributePreference has following properties:

• hasWeight – data property of type xsd:float. It is uded to compute
weighted average if no rules are available.

• relatesToAttribute – object property represents an attribute which is
bound to the characteristic. Its range instances are of type GenericAt-
tribute

1.1.6 GenericUserCharacteristic class

GenericUserCharacteristic has following properties:

• relatesTo – object property with a range instances of any class from user
and domain model.

1.1.7 RuleCharacteristic class

RuleCharacteristic class (Fig 1.2) has following properties:

• hasResultValue – data property of type xsd:float represents the result-
ing value of the rule.

• hasClause – object property with a range instances of type Clause rep-
resents individual clauses of the rule.

3



GenericAttribute

hasAttributeSequence Instance rdf:List

c:rEqual

c:Relation

io

c:rAbove

io

c:rBelow

io

Clause

hasDatatypeValue Any*

hasObjectTypeValue Instance*

hasRelation Instance c:Relation

hasAttribute Instance GenericAttribute

hasAttribute
hasRelation

RuleCharacteristic

hasResultValue Float

hasClause Instance* Clause

hasClause*

Figure 1.2: Part of a model representing a Rule Characteristic

1.1.8 Clause class

Clause class represents a clause part of the rule – a condition applied on a
particular attribute. It has following properties:

• hasAttribute – object property represents an attribute on to which the
property is related. It has range instances of type GenericAttribute

• hasDataTypeValue/hasObjectTypeValue – data/object property, which
represents a value of respective attribute;

• hasRelation – object property with a range instances of type c:Relation
represents a type of relation (<, >, =).

1.1.9 GenericAttribute class

GenericAttribute class represents properties of any object. It is required to
create a subclass along with instances in a domain specific part of the model.
The class has following properties:

• hasAttributeSequence – object property with a rdf:List as a type of
range instaces, which represents a list of properties from a base class of
domain specific model (i.e., a Publication in MAPEKUS project).

4



1.1.10 CrispCharacteristic class

CrispCharacteristic class holds evidence of tolerable values of properties, if
these can not be ordered naturally (e.g., places or company names). It has
following properties:

• hasCrispValue – data property of type xsd:string represents a list of
values, which are of user’s interest.

1.1.11 FuzzyCharacteristic class

FuzzyCharacteristic class (Fig. 1.3) represents fuzzy characteristic for prop-
erties, whose values can be naturally ordered (e.g., a salary, received degree). It
has following properties:

• hasFuzzySet – object property with a range instances of type FuzzySet
represents fuzzy set, which assigns a number R, R ∈< 0, 1 > to each value.
Higher the number is, better the value is for the user.

1.1.12 FuzzySet class

Fuzzy set is determined by its member function. This function assign a number
from < 0, 1 > to each item. If an item is assigned 0, it does not belong to the
set. If an item is assigned 1, it belongs to the set. Values from open interval
(0,1) are interpreted as a partial membership in the set. The shape of the set is
acquired by linking all its points.

FuzzySet class has following properties:

• hasPoint – object property with a range instances of type FuzzySetPoint
represents individual points of a fuzzy set;

• hasType – object property with a range instances of type FuzzySetType
represents one of four set types.

1.1.13 FuzzySetPoint class

FuzzySetPoint class has following properties:

• hasY – data property of type xsd:float represents rating from 0 to 1;

• hasX – data property of type xsd:float represents numerical value of an
object;

• hasXString – data property of type xsd:string represents a label of
value.

FuzzySet point has coordinates x, y and a label. If we want to plot a fuzzy
set, we plot hasXString values on x-axis. If the items of a set are number, than
the labels are their textual representations (x=1, xstring=“1”). If the items of
a set are values such as Bc., Mgr. Phd., the value hasX would contain symbolic
numerical values (xstring = “Bc.”, x = 1; xstring = “Mgr.”, x = 2).

5



ACSENDING

FuzzySetType

io

HILL

io

DESCENDING

io

VALLEY

io

FuzzySetPoint

hasY Float

hasX Float

hasXString String

FuzzyCharacteristic

hasFuzzySet Instance FuzzySet

FuzzySet

hasPoint Instance* FuzzySetPoint

hasType Instance FuzzySetType

hasFuzzySet

hasType hasPoint*

Figure 1.3: Representation of fuzzy characteristics.

1.1.14 FuzzySetType class

FuzzySetType class represents types of fuzzy sets, which expresses the shape of
member function. The class has following instances:

• ASCENDING – the member function is ascending;

• DESCENDING – the member function is descending;

• HILL – the member function has a triangle- or trapezoid-like shape;

• VALLEY - inverse of HILL, it reaches its maximum at the edges of function’s
domain.

1.1.15 FuzzyfiedCharacteristic class

Despite of the fact, that values of a particular properties can not be naturally
ordered (places, company names, etc.), we can assign a 0-to-1 preference to some
values. It is not a fuzzy set, as we do not have an x-axis, so we do not know the
order. However, we can still use it when selecting the best objects.

FuzzyfiedCharacteristic class has following properties:

• hasFuzzyfiedValue– object property represents values of properties along
with their numerical rating. Its range instances are of type Fuzzyfied-
Value

6



Figure 1.4: Domain specific user for publications domain.

1.1.16 FuzzyfiedValue class

FuzzyfiedValue class has following properties:

• hasString – data property of type xsd:string represents values of prop-
erties, which can not be ordered naturally;

• hasEval – data property of type xsd:float taking the value from 0 to 1,
which express to what extent the user prefers this value.

1.2 Domain-specific model

In general, there could be several domain-specific models, which are connected
with domain-independent model. In the MAPEKUS project, we use a domain
of publications.

1.2.1 PublicationSpecificUser class

Connection of domain-specific model to the domain-independent model is real-
ized through PublicationSpecificUser class (Fig. 1.4) as a subclass of Do-
mainSpecifiUser class of a domain-independent model.

PublicationSpecificUser has following properties:

• hasCharacteristic – object property with a range instances from a union
of classes RuleCharacteristic and AttributePreference.

• hasVisitedPublication – object property represents records about vis-
ited publications. Its range instances are of type VisitedPublication.

1.2.2 VisitedPublication class

VisitedPublication defines a record about interaction of user with domain
content.It has following properties:

• hasDateOfVisit – data property of type xsd:string represents a date,
when the interaction occurred.

• hasPublication– object property with a range instances of type p:Publication
represents a domain content (a publication);

• hasRating – data property of type xsd:int represents user’s rating of the
publication.

1.2.3 PublicationAttribute class

Class PublicationAttribute is a subclass of a GenericAttribute class and
replaces it in the domain of publications.

7


