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Abstract. Graph ranking algorithms such as PageRank and HITS share
the common idea of calculating eigenvectors of graph adjacency matrices.
This paper shows that the power method usually used to calculate eigen-
vectors is also present in a spreading activation search. In addition, we
empirically show that spreading activation algorithm is able to converge
on periodic graphs, where power method fails. Furthermore, an extension
to graph ranking calculation scheme is proposed unifying calculation of
PageRank, HITS, NodeRanking and spreading activation search.

1 Introduction

Rapidly growing information volume in world-wide web is forcing search engines
to find new ways of computing better results. Recent works show that the us-
age of additional metadata, such as the link structure and usage data of the
web [1], or even topics [2] can be used to improve search and recommendation
results. While some works focus on exploring the colorful spectra of possible
metadata features the core idea of the most popular and well known PageRank
and HITS algorithms usually used as a basis still remains the same – in calcu-
lating eigenvectors of graph adjacency matrices. These computed eigenvectors
usually represent an additional relevance measure of vertices in graph and are
then used to alter (and hopefully improve) ordering in search and/or recommen-
dation results. Such recommendations have shown usefulness in many domains,
including web search [3], job offers [4], publications, or even e-learning.

After a short description of an iterative process called power method that
can be used to calculate matrix eigenvectors in Section 2, we concentrate on
an slightly different approach to graph ranking, which is based on a theoretical
model of human semantic memory known as spreading activation search (Sec-
tion 3). In Section 4 we show that recursive procedure of spreading activation
search can be reformulated using matrix algebra resulting into a minor varia-
tion of classic power method. Section 5 empirically shows that the power method
and spreading activation search can converge to identical results. Section 6 revis-
its PageRank, HITS and NodeRanking algorithms unifying them in a proposed
scheme extension for iterative graph ranking calculation.



2 The Power Method

Power method is an iterative procedure wich can be used to calculate matrix
eigenvectors. If A is a matrix1, eigenvector r∞ can be calculated simply by
applying matrix multiplication in an infinite loop2 starting from a randomly
chosen vector r0.

rk = rk−1A (1)

lim
k→∞

rk = r∞ = r∞A (2)

3 Spreading Activation Search

Spreading activation search [5] is based on a simple recursive procedure that
distributes energy on vertices through graph edges. Similarity of graph vertices is
then expressed by overall energy amounts accumulated on vertices that resulted
from this energy distribution process.

This energy distribution process usually starts by energizing a starting ver-
tex of graph with a given amount of energy and can be formulated as follows.
Whenever vertex v is activated by energy e, energy e is added to overall activa-
tion vector c, where component cv = cv + e. Subsequently all vertices directly
connected to vertex v are activated by energy e′ = e/ρ(v), where ρ(v) is the
degree of vertex v. For convergence reasons vertex activation energy e′ must also
satisfy e′ > θ, where θ is a given small energy threshold value.

Algorithm 1 describes this process using a recursive function.

Algorithm 1 Spread-activation(v, e, c ⇐ 0)
Require: Starting vertex v.
Require: Activation energy e > 0.
Require: Energy c accumulated on graph vertices.

1: cv ⇐ cv + e
2: e′ ⇐ e/Vertex-degree(v)
3: if e′ > θ then
4: for all vertices t such as, there exists an edge from v to t do
5: c⇐ Spread-activation(t, e′, c)
6: end for
7: end if
8: return c

1 This matrix must satisfy some additional constraints such as being stochastic, irre-
ducible and aperiodic. We explain and discuss these properties later.

2 In an actual implementation an infinite loops would of course take infinite time to
calculate, thus a small convergence threshold is usually used to stop computation
resulting into an acceptable eigenvector approximation.



4 Rewriting Spreading Activation Search

Let us start with a simple adjacency matrix B of some graph G defined as

Bij =
{

1 if G contains an edge from vertex i to j
0 otherwise (3)

Stochastic matrix A can be created from B by dividing each matrix element
Aij by corresponding vertex degree ρ(i). In matrix algebra this is equivalent to
matrix row normalization, where k is the total number of vertices.

Aij =
Bij

ρ(i)
=

Bij∑
k

Bik

(4)

Such stochastic matrix can be now easily exploited to calculate one energy
distribution step of spreading activation search.

Simple matrix multiplication of a starting vector r0 by matrix A results into
a new vector r1. This vector represents energy on each vertex of graph which has
been distributed by neighboring edges, while r0 consists of starting activation
energies for each vertex of graph G. By applying these matrix multiplications in
an iterative fashion, successive energy distributions steps can be calculated.

rk = rk−1A (5)

In spreading activation search, final vertex ranks are obtained by accumulat-
ing energies, which were propagated through neighboring edges. Since we have
shown that r0, r1, . . . , r∞ correspond to these energy propagation steps, final
ranks can be easily calculated by summing up all propagated energies. After
k steps final ranks c of graph vertices are computed as follows.

ck =
k∑

i=0

ri (6)

With a silent assumption of discarding threshold a comparison of equations 1
and 5 reveals that power method (in its purest form) is also present in spreading
activation search.

Thresholding can be included back into this calculation by adding a thresh-
olding function τθ with threshold θ at each energy propagation step.

rk = τθ(rk−1A) (7)

Where τθ is defined as

(τθ(r))i =
{

ri if ri > θ
0 otherwise (8)



5 Comparison of Rank Computation

The main difference between power method and spreading activation search lies
in final rank calculation. While ranks computed by power method use only the
last step (an eigenvector approximation), spreading activation search ranks sum
up the history of the whole process of finding an eigenvector by power method.

Figure 1 shows an example of eigenvector approximation using the power
method (a) and a calculation of ranks by spreading activation search (b) on
a small graph (4 vertices, 6 edges). Normalized values of ranks for both methods
clearly converge to the same result of normalized eigenvector approximation.
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(a) Power method.
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(b) Spreading activation search.

Fig. 1: Convergence of ranks computation on a small graph (4 vertices, 6 edges).

Figure 2 shows another example of rank calculation on a small periodic graph
(5 vertices, 12 edges). By definition power method fails to converge on periodic
graphs and starts to oscillate (a). However, spreading activation search success-
fully converges even on such periodic graph (b).
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(a) Power method.
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(b) Spreading activation search.

Fig. 2: Comparison of ranks computation on a periodic graph (5 vertices, 12 edges).

A large adjacency matrix constructed from CiteSeer citation dataset consist-
ing of approximately 3300 vertices has been used for further experimentation.
This matrix has been transformed into PageRank form with damping factor



0.85 to ensure convergence of power method. Figure 5 shows the convergence
of mean vertex rank difference of spreading activation calculation and power
method calculation. Mean vertex rank difference is calculated as

mean vertex rank difference =
N∑

i=1

|ai − bi|
N

(9)

where N is number of vertices.
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Fig. 3: Convergence of mean vertex rank difference of spreading activation search and
power method calculation on CiteSeer dataset.

6 Revisiting PageRank, HITS and NodeRanking

The process of calculating ranks using spreading activation search starts by ini-
tializing a starting vector r0 which represents starting activation energies on ver-
tices, then the power method is used to calculate energy distribution steps which
are finally summed up resulting into final ranks. Table 1 shows the power method,
PageRank [3], HITS [6], NodeRanking [7] and spreading activation search rank-
ing algorithms rewritten into this initialization, iteration and ranking scheme.



Table 1: Graph ranking algorithms comparison.

Algorithm Initialization Iteration Ranking

Power method r0 rk = rk−1A rk

PageRank3

M︷ ︸︸ ︷
(1− d)

E

n
+ dA

r0

rk = rk−1M rk

HITS4 a0, h0
ak = ak−1A

T A
hk = hk−1AAT ak,hk

NodeRanking5

M︷ ︸︸ ︷
J
E

n
+ (E− J)A

Jii = 1
σ(i)+1

r0

rk = rk−1M rk

Spreading activation
with threshold θ

r0 rk = τθ (rk−1A)

k∑
i=0

ri

7 Future Work

We have shown that the power method used to calculate eigenvectors is also
present in spreading activation search. Since fast eigenvector calculation is still
a demanding and open problem we focus our further research to exploitation
of various spreading activation search speedup techniques such as constrained
spreading activation [8] or caching spreading activation [9] which can be used in
distributed enviroment. By reusing these techniques we believe to find an alter-
native method for eigenvector calculation, however convergence characteristics
for large graphs are still being explored.

8 Conclusion

By rewriting spreading activation search using matrix algebra we have shown
that this graph ranking approach contains a minor variation of power method
which is used to calculate eigenvectors of matrices. We have unified the notation
of PageRank, HITS, NodeRanking and spreading activation search algorithms in
a simple scheme consisting of three steps (initialization, iteration and ranking)
demonstrating a significant similarity between them. We have empirically shown
3 d is damping factor (probability of jumping to a random vertex), E is a matrix of

all ones, n is number of all vertices in graph.
4 a is authority rank, h is hubness rank.
5 J is a probability matrix of a random jump from a vertex.



that normalized ranks calculated by power method and spreading activation
search can converge to the same result, thus hopefully opening a new possibility
to calculate eigenvectors by exploiting speedup techniques originally designed
for spreading activation search.
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